

Question #5 What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions?

Moustafa Chahine, Edward Olsen

NOAA Hyperspectral Spectrometer Workshop

March 29 - 31, 2011

Miami Florida

Question 5 – AIRS Specific

(concentrate on CO2 here; Question 9 talk will cover other GHGs)

What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO_2 , CH_4 , O_3 , N_2O , CFC's, NH_3 , NF_3) that contribute to global warming

- AIRS provides the increased spatial/temporal coverage required to identify <u>regional</u> carbon sources and sinks (especially in the Southern Hemisphere)
 Global coverage, day and night, cloudy and clear, all seasons
 Provides integral constraint at coarse spatial scales and long time scales
- AIRS partial column measurements complement ground based systems
 Mid-trop can be used to mitigate transport model errors (vertical and horizontal)
 Extension to stratosphere will constrain CO₂ at the top end of the
 upward-looking FTIR averaging kernel and broaden understanding of
 Strat-Trop exchange
 Extension to lower troposphere will enhance assimilation studies (esp. for SH)
- What does AIRS show for future thermal IR atmosphere measurements?
 Higher spatial and spectral resolution required for lowest 1 km of atmosphere
 Global coverage, day and night, cloudy and clear to lowest 1 km of atmosphere
- The next GEN AIRS?
 ARIES concept for thermal sounder expansion to shortwave for near surface 2

The Atmospheric Infrared Sounder on NASA's EOS Aqua Spacecraft

AIRS Characteristics

Launched: May 4, 2002

Orbit: 705 km, 1:30pm, Sun Synch

• IFOV: 1.1° x 0.6° (13.5 km x 7.4 km)

Scan Range: ±49.5°

Full Aperture OBC Blackbody, ε > 0.998

Full Aperture Space View

Solid State Grating Spectrometer

IR Spectral Range:
 3.74-4.61 μm, 6.2-8.22 μm,
 8.8-15.4 μm

IR Spectral Resolution:≈ 1200 (λ/Δλ)

IR Channels: 2378 IR

VIS Channels: 4

• Mass: 177Kg,

Power: 256 Watts,

Life: 5 years (7 years goal)

Built: BAE Systems

AIRS

AIRS Spectra

AIRS Products for Weather, Climate and Composition

AIRS Operational Product Mid-Tropospheric CO₂ (8-10km)

370

365

Global Yield of AIRS Level 2 Mid-Tropospheric CO₂

AIRS Daily CO₂ Yield 1°x1° Spatial Resolution

AIRS V5 CO2: Day 2003 7 15 x 1 15,000 CO₂ Soundings 450,000 CO₂ Sou

375

AIRS Monthly CO₂ Yield 1°x1° Spatial Resolution

AIRS Level 2 Mid-Tropospheric CO₂ retrieval yield is controlled by requirement for highest quality temperature and water vapor AIRS Level 2 products in 2x2 array of adjacent FOVs

380

A sounder with higher spatial and spectral resolution will increase yield and extend retrieved CO₂ profile to the near surface.

Thermal IR sounding allows retrievals day/night, pole-to-pole, land/ocean/ice, cloudy/clear

Representative AIRS Mid-Trop CO₂ Averaging Kernels

(Individual AKs accompany each AIRS CO₂ sounding in the data products)

AIRS Data Show CO₂ is not well mixed in Mid-Troposphere

July 2003 AIRS mid trop CO₂ (5° smoothing) with 500 hPa gph contours

CO₂ is NOT Well Mixed in the mid-troposphere

- Driven by synoptic-scale phenomena (polar/subtropical jet streams)
- Complexity of the Southern Hemisphere not present in models
- AIRS mid-trop data will facilitate modeling of vertical & horizontal transport

AIRS - CarbonTracker upper-tropospheric CO₂ difference [ppm] vs. cloud top pressure eight N/S swaths, 2008

Comparison of Collocated AIRS CO₂ Retrievals with January 2009 HIPPO Data for profiles ranging from near surface to p < 200 hPa

Collocated AIRS Mid-Trop CO₂ and Park Falls FTIR Total Column CO₂

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California
Pasadena,

AIRS daytime data collated within radius of 500km of highest quality Park Falls data taken within \pm 2 hours of AIRS overpass

Variability seen in 2009 HIPPO Campaign Compares well with AIRS Mid-Trop CO₂

S.C. Wofsy, et al (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine grained, global scale measurements of climatically important atmospheric gases and aerosols, *Proceedings of the Royal Society A, in press.*

M.T. Chahine, et al., Satellite remote sounding of mid-tropospheric CO2, Geophys. Res. Lett., 35, L17807, doi:10.1029/2008GL035022.

National Aeronautics and Regional Comparison with CMDL surface observations Space Administration March - November 2005 Jet Propulsion Laboratory

California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

Andrew Tangborn NASA/GSFC and UMBC

Assimilation of AIRS mid-trop CO₂ into GEOS5

Conclusions:

Comparison with CMDL surface data indicates that AIRS assimilation is improving the accuracy of surface values of CO₂ in GEOS5.

Differences between GEOS5 and AIRS CO₂ can parameterized by hemisphere, with a systematic negative bias in the model during winter.

10 Model **Error Bars** Assimilation Blue - model Red I Assimilation -5 S. America -10 & Antarctica N. America **Pacific** NH Africa Europe -15^L

Observation Locations:

green = mean assimilation error is lower Red = mean assimilation error is higher

National Aeronautics and Space Administration

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Atmospheric Infrared Sounder

Integrated Carbon Cycle Data Assimilation System CAM3.5, LETKF Assimilating AIRS Mid-Trop CO₂

Junjie Liu UC Berkeley/JPL

Assimilation of AIRS mid-trop CO₂ improves spatial pattern

370 371 372 373 374 375 375.5 376 376.5 377 378 379 380

Spatial variability of AIRS-run is 0.53 ppm which is much larger than that of the Met-run (0.17 ppm)

Assimilation of AIRS mid-trop CO₂ adjusts vertical gradient May 2003: CO₂(850)-CO₂(400)

NH: CO₂(850)>CO₂(400): fossil fuel+ land carbon source SH: CO₂(850)<CO₂(400):transported from the NH NOTE: scale of Met-run is 7x that of difference run

Assimilation of AIRS mid-trop CO₂ improves state estimate by 1 ppm

Influences of El Niño on Mid-Trop CO₂ From AIRS and MOZART-2

Xun Jiang University of Houston

Jiang, X., M. T. Chahine, E. T. Olsen, L. L. Chen, and Y. L. Yung (2010), Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder, Geophys. Res. Lett., 37, L13801, doi:10.1029/2010GL042823

NOTE: MOZART-2 results are preliminary. The boundary condition is a climatology and does not include interannual variability. (Courtesy of 6 Maochang Liang for the MOZART-2 model run)

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Atmospheric Infrared Sounder

MJO-related AIRS Mid-Tropospheric CO₂ Anomaly Intraseasonal CO₂ variability across the global tropics

King-Fai Li, Tian, B., Waliser, D.E. and Yung, Y.L. (2010), Tropical mid-tropospheric CO2 variability driven by the Madden-Julian Oscillation, PNAS, 107 (45), 19171-19175, doi: 10.1073/pnas.1008222107

-0.6

-0.5 -0.4

MJO has previously been studied via its impact on atmospheric winds, pressure, temperature, moisture and rainfall.

Its impact upon mid-tropospheric CO₂ has now been detected.

This provides a new window of study of this planetary-scale zonal overturning circulation anomaly.

Contour lines: ECMWF-interim $\bar{\omega}_{700}$ (Dotted: -ve, Solid: +ve)

Contours start from ±4 mPa/s at an interval 4 mPa/s

0.2

0.6

-0.4 -0.3 -0.2 -0.1

The CO₂ anomaly is driven by the eastward-propagating vertical circulation of the MJO and implies that CO₂ values are higher at the surface than in the upper troposphere.

Contour lines represent TRMM Rain (Dotted: -1 mm/day, Solid: +1 mm/day)

0.2

CO₂(ppmv)

0.6

This intraseasonal CO₂ variability provides a robustness test for chemical transport models.

Mid-Trop CO₂ Bias due to H₂O Absorption is Small

- Peak-to-Peak MJO Amplitude of H₂O at 600 hPa ≈ 1.4 g/kg
 [Tian et al. (2006), Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations, J. Atmos. Sci., 63, 2462]
- Then Potential Bias in CO₂ ≈ 1.4 × 0.13 < 0.2 ppm

Factors Affecting the CO₂ Retrievals

	Mid-Troposphere -10km	Stratosphere – 30km	Lower Trop – 2.2km
ν range:	13 CO ₂ channels: 700 cm ⁻¹ – 722 cm ⁻¹	17 CO ₂ channels: 650 cm ⁻¹ – 680 cm ⁻¹	10 CO ₂ channels: 730 cm ⁻¹ – 745 cm ⁻¹
<i>T</i> (ρ)	Strong	Very strong	Strong
O ₃	Strong	Weak	Medium
H ₂ O	Medium	No impact	Medium
Surface emission, E_s (T_s, ε_s)	Very weak	No impact	Medium
ΔG/ΔCO ₂ *	~0.4	~0.2	~0.5

* $(\Delta G/\Delta CO_2)$ describes the sensitivity of observed spectra to changes in CO_2 . It is a function of the lapse rate of atmospheric temperature profiles which is 7 K/km in the mid-troposphere, 1.5K/km in the stratosphere and 10K/km near surface.

- Mid-troposphere: Operational and Released to the Public (Sept 2002 – Present)
- Stratosphere: Algorithm Completed, QA and Validation Underway (8/2010)
- Lower troposphere: Algorithm Nearly Complete, Preliminary Retrievals Underway (12/2010)

3 Layers of CO₂ Derived from AIRS Summary

3 Layers of CO₂ Derived from AIRS Current Status

Task	Mid-Troposphere	Stratosphere	Lower Troposphere
Algorithm Development Initial Channel Selection	✓	~	~
Retrieval Optimization Beta Software Development & Test Refine Channel Selection Refine Quality Control	✓	✓	✓
Validation and Comparison In-Situ Measurements Models	✓ *	In progress	In progress
Report Results Professional Meetings Journal Publications	✓		
Transition to Operational Stage Production Software Development Documentation	✓		
Production	✓		
Distribution via GES DISC & JPL	✓ *		

ARIES can map GHG emissions from large cities and counties

ARIES Characteristics:

- Extension of AIRS Methodology
- Global Maps Daily (±55° Swath)
- Spatial Resolution: 2 km
- Spectral Range: 3.0 15.4 μm
- Spectral Resolution: 0.5 cm⁻¹

Over 5000 Channels

Products:

Vertical Profiles of:

T, H₂O CO₂, CH₄, CO, N₂ O, SO₂, HNO₃, O₃

AIRS CO₂ Map, July 2003

ARIES 1 km 3x3 km CO₂

ARIES CO₂ Map Resolution

Products	IFOV (km)	λ ₁ (μm) ν ₁ (cm ⁻¹)	λ_2 (μ m) ν_2 (cm ⁻¹)	R,Δν (cm ⁻¹)
Temperature, CO ₂ , CH ₄ , N ₂ O, CO	1	3.39 2950	4.76 2100	2.0
Water, CH ₄ , SO ₂ , HNO ₃	1	6.20 1613	8.70 1150	1.0
O ₃ , HNO ₃	1	8.70 1150	11.36 880	0.5
Temperature, CO ₂	1	11.36 880	15.38 650	0.5

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Atmospheric Infrared Sounder

Moustafa T. Chahine 1935 - 2011

